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One-Dimensional Hamiltonian for Columnar Liquid
Crystals

R. D'hulst1 and A. Caille1

Received May 26. 1998

A one-dimensional Hamiltonian is derived upon microscopic considerations to
model the columnar phases of a liquid crystal made of molecules of discrete
rotational symmetry. The study deals with the ground state of this Hamiltonian,
only the orientational degrees of freedom being taken into account. The
intracolumnar interaction is described by the natural cantedness of an isolated
column, while interaction parameters H and G characterize the amplitude of the
local crystal field at a site originating from the other surrounding columns. The
phase diagrams of the orientational ordering along the column are numerically
investigated and a previous analytical approach is briefly recalled. A new pertur-
bation development is proposed. This allows us to analyse a multiphase point
and to explain the appearance of an infinity of phases in the vicinity of this
point. The anisotropy of the columnar lattice is then investigated with the use
of the same perturbation development, and some of the properties of a complex
phase diagram are examined numerically as well as analytically.

KEY WORDS: Commensurate incommensurate transition; discontinuity.

I. INTRODUCTION

The liquid crystal state is an intermediate state of aggregation between the
perfect crystalline solid and the amorphous liquid states.(1) From a macro-
scopic point of view, it implies a hydrodynamic theory based upon 6 to 8
hydrodynamic variables.(2) However, our approach is rather based upon
microscopic considerations. The perfect crystalline solid state is charac-
terized by long-range order, which means that the knowledge of one
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elementary cell allows for the entire determination of the static state of the
whole crystal. The dynamic enters afterwards as fluctuations around these
static locations. Experimentally, the X-ray investigations give sharp Bragg
reflections, calling for a density-density correlation function described by a
periodic function of the basis vectors. In contrast, for the amorphous liquid
state, there is simply no way to express the density pair correlation
function except through the mean density. Liquid crystal states appear as
intermediate states of matter as, cooling from the amorphous high-tempera-
ture liquid phase, the various degrees of freedom arrange themselves progres-
sively, or, heating from the ordered low-temperature crystalline solid phase,
the long-range order of various degrees of freedom is progressively washed
out by the thermal fluctuations. Progressively means here that not all
degrees of freedom order or fall into disorder simultaneously, but the trans-
ition from long-range to quasi-long or short-range order is sharp enough
to define beyond doubt a transition temperature.(3)

The columnar liquid crystal state corresponds to a state of long-range
positional order in two dimensions and liquid-like order over the positions
in the third dimension. A two-dimensional crystalline lattice of liquid
columns is a convenient device to picture this state of aggregation.(3) More
precisely, the constitutive molecules stack one upon the other like plates to
form liquid-like columns, no long-range positional order being expected
along the columns. These columns are displayed on a regular two-dimen-
sional lattice. As a consequence, the density-density correlation function
corresponds to an anisotropic function of the relative positions, periodic in
only two dimensions. The so-described phase is usually refers as a disor-
dered columnar phase. On the other hand, cooling from this high tem-
perature disordered columnar phase, a sharpening in the Bragg reflections
may happen, revealing the appearance of some positional order along the
columns.(4) As if this corresponds to a true long-range order or only to quasi-
long range order is not yet fully elucidated.(5) We do not try to answer
this question in this work, but concentrate our investigations over these
so-called ordered columnar phases. More particularly, the orientational
ordering along one column of an ordered columnar mesomorphic phase
built up with molecules of discrete rotational symmetry is investigated. This
study is motivated by the special case of the rufigallol-n-hexaoctanoate
(RHO) which exhibits two different columnar mesophases in an interval of
temperature ranging from 95 °C to 127°C.(6,7) The molecules of RHO are
characterized by a discrete rotational symmetry, having an axis of rota-
tional symmetry of order two.

No true long-range order being thermodynamically stable at finite
temperature in one-dimensional systems for short-range interactions,(8) it
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becomes clear that the interplay between the intracolumnar interactions and
the intercolumnar interactions is of fundamental interest. A microscopic
hamiltonian is derived to model the influence of the columnar lattice sym-
metry over the orientational order along one column. Only the first-neigh-
boring interactions both for the intra and the intercolumnar interactions
are taken into account. This work is an analysis of the ground state of this
hamiltonian. It can be interpreted as a step in the understanding of systems
generalizing notions traditionally restricted to magnetic systems.

The outline of this paper is as follow. Section II is devoted to the
presentation of the mathematical model and the associated hamiltonians.
In Section III, a perfect triangular array of columns is investigated: pre-
vious results with dominant intracolumnar interactions are shortly recalled
to be compared with the new results presented in the second part of
Section III. This second part considers the opposite case where the inter-
columnar interactions are dominant. In Section IV, the effect of the lattice
anisotropy is introduced and agreement between an analytical and a
numerical solution is discussed.

II. THE MODEL
The model is restricted to the consideration of one column assimilated

to a one-dimensional lattice, each site being occupied by one molecule.
This assumption limits us to the investigation of only the orientational
degrees of freedom of the molecules, having in mind that the positional
degrees of freedom have ordered at least partially at a higher temperature.
As a consequence, the treatment is done at zero temperature. Each
molecule is assumed to be represented by a two-dimensional rigid body
with an axis of rotational symmetry of order 2, labelled C2. This axis is
directed perpendicularly to the core of the modelled entity and coincide
with the columnar axis. Finally, the so-defined column is supposed to be
part of a two-dimensional lattice of identical columns.

The molecules in the investigated column can rotate around their C2

axis and their angular positions are located by the angular deviation On

from a reference direction fixed in the lattice of columns. The influence of
this lattice is restricted to the first neighboring columns. With all these
assumptions, a method initiated by Heinonen and Taylor(9) is used to
derive a microscopic one-dimensional hamiltonian. The remaining hypo-
theses are that the array of columns is triangular and that the column
under study is under the influence of the averaged field of their six first
neighbors. The resulting hamiltonian is
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with A, the natural cantedness of the column, defined as the relative orien-
tation of two succeeding molecules in a column without any interaction
with the two-dimensional lattice. H is an interaction parameter, expressing
the magnitude of the intercolumnar interaction in unit of the intracolumnar
interaction. The sums in Eq. (1) extend over the whole column and peri-
odic boundary conditions are chosen. The r.h.s. of Eq. (1) can be divided
into two sums, the value 2 of the argument of the cosine of the first sum
being related to the symmetry of the building blocks while the value 6 of
the argument of the cosine of the second sum is related to the columnar
lattice symmetry. However, to avoid differentiating physically identical con-
figurations, the change of variables g>n = 29n is suitable, leading to the
reduced hamiltonian

with the redefinition of the natural cantedness <x = 2A and the introduction
of a new parameter r, with the particular value r = 3 for the purpose of
the study of RHO. To extend this study to a more general class of
hamiltonians, the value of this argument is most of the time supposed to
be any positive integer. Readily, r corresponds to the ratio of the order of
the columnar lattice symmetry to the order of the constitutive molecules
symmetry.

In the second part of this work, the discrepancy between the real lattices
and a perfect triangular lattice of columns is investigated. In fact, the
experimental results for RHO rather suggest columns displayed on rec-
tangular lattices distorted for about 10 % from perfect triangular arrays.(6)
As a consequence, a uniaxial deformation is locally added to deform con-
tinuously the triangular array into a rectangular one. This method reveals
the first corrections to Eq. (2) and the hamiltonian

seems convenient, with the same change of variables. G corresponds to an
intercolumnar interaction parameter in unit of the intracolumnar inter-
action and the relative signs of H and G are chosen to have both H and
G of the same sign for the physical configurations of interest. It is worth
mentioning that even if the rectangular array does not depart very much
from a triangular one, the contribution of the last term in Eq. (3) can
nevertheless be important. As an example, a rather crude estimation of
the relative importance of G and H, taking into account the measured
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intercolumnar spacings and a van der Waals-like interaction potential gives
G = 4.5H. This estimation is rather crude because it makes use of three-
dimensional and finite temperature results for a one-dimensional model at
zero temperature, but the relative scale is certainly meaningful.

To be complete, a short explanation of a commonly-used notation for
the different states of the column is required.(10) Suppose we progress along
the column following the succeeding molecular orientations, the sign of a
defining the direction of rotation. Starting with a given molecular orienta-
tion at an arbitrary site n, it may happen that after Q sites, we have made
P full rotations around the column and that we are back to the same orien-
tation at site n + Q. Taken the minimal integer values of P and Q that
respect this property, such as the entire column can be built by joining end
to end similar sequences of Q molecules, the corresponding state of the
column is called P/Q. In particular, in a P/Q phase, for any value of n,

The averaged twist of the column w = P/Q is called the winding number.
This obviously can only be used to describe commensurate phases while for
the incommensurate phases, the winding number is an irrational quantity.

III. ONE COLUMN IN A TRIANGULAR ARRAY

As explained in the previous section, the energy of a column in a fic-
titious field modelling the influence of six equivalent neighboring columns
is suitably described by Eq. (2). The phase diagram is numerically
investigated with the use of the effective potential method of Griffith and
Chou(11) and the limits of the phases covering most of the diagram are
presented at Fig. 1, with the particular choice r = 3. The boundaries of
various commensurate phases are determined by the search for minimum
energy configurations imposed by intracolumnar constraints and by the
intercolumnar interactions with the surrounding columnar lattice. As a
result, the interaction parameter H is plotted as a function of the natural
angle a./2n. Note that the axes are limited to H in [0, 1] and oL/2n in
[0, 1/6]. From one side, the symmetries of the hamiltonian allow the deter-
mination of the entire phase diagram from the knowledge of the diagram
for tn/2n in [0, l/2r]. On the other side, the ordinate scale is sufficient to
appreciate the diagram topology as it will be shown afterwards.

Such a phase diagram was already the subject of a lot of researches
(10,12) and well-known results are recalled. Subsection A is mainly con-
cerned with the H« 1 limit, and we therefore refer to this limit as the
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Fig. 1. Phase diagram of a column in a triangular array of columns. The continuous lines
are the numerical stability of the phases covering most of the phase diagram. More phases
exist in the unnamed spaces between the represented phases, and they can be determined by
increasing the numerical accuracy. The two dashed lines correspond to the stability limits of
the 0/1 and the 1/6 phases, from left to right, as determined by a soliton theory.

weak coupling limit, having in mind that the intracolumnar interactions
are dominant. In contrast, the strong coupling limit refers to H> 1, imply-
ing strong interactions with the columnar lattice.

For all positive integer values of r other than r = 1, the numerical phase
diagrams corresponding to Eq. (2) are very alike. A first common feature
is the existence of an infinity of phases on the straight line H = 0, any value
of a/2?r giving the winding number of the ground state corresponding to
this point. A second common feature is that at any given value of H < 1,
all the investigated commensurate phases seems to extend over a space of
finite measure in the limit of numerical accuracy. A third common feature
is the progressive expansion of r particular phases throughout the phase
diagram as H is further increased. Remark that these similarities between
phase diagrams corresponding to different values of r are also roughly quan-
titative. This can be easily pictured by the superposition of many (ar, r2H)
diagrams for various values of r.(13) The value r= 1 is discussed below.
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A. Weak Coupling

The value of r is kept as a positive parameter taking any value in the
set of the integer numbers, including the value r=1 . In this limit, it seems
reasonable to suppose that the configurations of the different phases do not
depart much from the ones adopted at H = 0. Therefore, one postulates a
structure characterized by

for the P/Q phase with w = P/Q. The first term on the r.h.s. of Eq. (5) is
the free-to-rotate structure solution for H = 0; the second term is the defor-
mation introduced by the local crystalline field H, a term vanishing for
H = 0; and the last term is a constant phase term describing the pinning of
the structure to the array of columns. This last term can take any value for
H = 0, reflecting the rotational symmetry of an isolated column. For
H« 1, it is assumed that the deformation £n stays small. So, the hamil-
tonian of Eq. (2) reduces to the hamiltonian of Frenkel and Kontorova.(14)

Using the continuous limit method initiated by Frank and Van der
Merwe(15) and generalized by Theodorou and Rice,(16) the column is now
treated as a continuous media. The previously integer variable n is allowed
to vary continuously and the sums in Eq. (2) transform into integrals.
Allowing the phase angle $ defined at Eq. (5) to depend on n, the stability
limits of the P/Q phase can be determined. The first instability corresponds
to the zero creation energy of an isolated deformation localized over a few
sites. Such an entity is called a soliton. The transition from the P/Q con-
figuration to another one is the result of the zero creation energy of a lat-
tice of solitons, which induces the change of commensurability. The scaling
behavior of the spread d of any P/Q phase can be characterized by(17)

where e is an integer constant related to the P/Q phase in the following
way: if Q and r are relative prime integers, e = Q/2, otherwise, e = Q/2r.
Extending to incommensurate phases this result obtained for commen-
surate phases, it becomes evident that the incommensurate phases extend
over a space of zero measure for all values of H =^ 0.

The dashed lines starting at (0, 0) and (1/6, 0) in the (a./2n, H) phase
diagram correspond to the stability limits of the 0/1 and 1/6 phases, respec-
tively. For a more explicit presentation of this treatment and further
results, we refer the reader to the original paper of Frank and Van der
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Merwe,(15) or, more recently, to the review proposed by P. Bak(17) and
other instructive papers on the subject.(18)

B. Strong coupling

The effect of the local field H is to pin around r orientations an
otherwise free to rotate structure, promoting r commensurate phases. Con-
sequently, the value r = 1 has to be distinguished. As a matter of fact, the
numerical phase diagram obtained for r=1 (10) has a different topology
from those obtained for r^ 1, especially for H>1 . The difference clearly
arises from the lack of competition for r = 1. Effectively, in this case, above
a given value of H, the 0/1 phase is the only remaining ground state for all
the a values. In other words, over a critical value of H, the parameter a
becomes inefficient. For the sake of clearness, we will restrict temporarily
our attention to the particular value r = 3. As H is increased, all the
molecules tend to align with one of the three favoured angular positions
and the three commensurate 0/1, 1/3 and 2/3 phases expand progressively
throughout most of the phase diagram. At infinite value of H, the ground
state solutions have to be built from the three favoured angular positions
and this allows the existence of the 0/1 phase in ] — 1/6, l/6[, the 1/3 phase
in ]1/6, l/2[ and the 2/3 phase in ]1/2, 5/6[. These are open intervals over
a./2n values because at the particular points 1/6, 1/2 and 5/6, the 0/1, 1/3
and 2/3 phases are degenerated in pairs. And so is any combination of
these degenerated phases. These particular points, where the degeneracy of
the ground state is infinite, are called multiphase points.

The first step of our approach is to consider the coexistence of the 1/2
phase with the 1/3 phase, as if these phases were the only ones to exist. From
the analytical expressions of the energy of these phases, it can be inferred
that the 1/2 phase is never totally hidden by the 1/3 phase: up to infinite
value of H, the 1/2 phase is always of lower energy than the 1/3 phase over
a finite domain of the phase diagram. This is the proof that up to infinite
value of H there remains a space of finite measure in the phase diagram
where the ground state is not any of the three favoured phases.

The second step of our approach is based upon general considerations
over the configuration of the 1/2 phase: it appears that, as H is increased,
the configuration approximately corresponds to the alternation of angular
deviations of 2^/3 and 471/3. Apparently, the 1/2 structure can be correctly
described by a racemic mixture of the 1/3 and the 2/3 phases, with an
added deformation. More, the 1/2 domain of the phase diagram develops
around the vertical line ot./2n — 1/2, which is the line where the 1/3 and the
2/3 phases are degenerated in pair. Therefore, it seems reasonable to sup-
pose that a mixture of the 1/3 and 1/2 phases with an added deformation
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should develop around the line where the 1/3 and the 1/2 phases are
degenerated in pair. Now, going back to any positive integer value of r but
r=1, the study is restricted to the region a./2n in [0, l/2r]. Suppose we
start from the multiphase point (1/2r, oo) in the (a./2n, H) phase diagram.
The corresponding degenerate ground states can be interpreted as com-
binations of various sequences of the 0/1 and the 1/r phases. Consider only
one type of these configurations: sequences of N sites having parallel align-
ment, separated by a 2n/r rotation at their intersite junction. In each
sequence, all the molecules are pointing in one of the preferred orientations
<pn = (2k + 1) n/r, where k is an integer. To this value of N corresponds a
1/rN phase, in the previously explained notation. Notice that this type of
configurations was present in the multisoliton solution existing for small
values of H: the instability of the ferromagnetic 0/1 phase, f.i., was the result
of the appearance of repeating sequences of 0/1 phase connected by a con-
tinuous and localized variation of the angular orientation.(15) Obviously,
when increasing H, the continuous character was no longer valid, calling
for the above discontinuous character.

Relaxing from the infinite value of H to a finite value H» 1, a defor-
mation at each site in is also added to the above identified configurations.
Because of the translational invariance of our chosen configurations, the
mean energy for a site Hm can be estimated by averaging over N molecules,
its expression being:

The minimization for each £,n gives for n= 1,

for n = 2,...,N-1,

and for n = N,
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The deformations in power of 1/H are expressed as

The coefficients <(i) are determined by equating terms of equal order in 1/H
in the minimization equations [19]. The solutions are functions of N and
are obtained for r = 3 and N = 2, 3 and 4. Restricting the diagram to the
corresponding 1/6, 1/9 and 1/12 phases and the 0/1 phase, their boundary
lines are reported as dashed-dotted lines on Fig. 2. The full lines corre-
sponds to the numerical stability limits of these phases obtained with the
effective potential method of Chou and Griffith.(11) As examples, the mean
energy for a site for the 1/6 phase up to the first order in 1/H is

while the mean energy for a site for the 1/9 phase up to the second order
in 1/H is

The limit of this analysis is clearly associated to the truncated expansion in
powers of 1/H of the energy. To observe a given phase, it is necessary to
push the development to a minimal power of integer value e.

The third step of our work is to generalize the previous development
to any value of N keeping r as a free integer parameter, but again excluding
the value r=1. Similar configurations as above defined are considered:
sequences of N aligned molecules, the sequences being separated by an
angular deviation of 2n/r at their intersite junction. All the molecules of one
sequence are pointing in one of the favored directions. That is to say

where i is an integer parameter numbering the successive sequences, and £,n
corresponds to an added deformation expected to be present as H is
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relaxed from infinite value to a finite value, H» 1. With these structures,
succeeding sequences of N molecules define a 1/rN phase. Equation (14) is
substituted in the hamiltonian of Eq. (2) and the energy is minimized as a
function of the deformations £n. The result is Eqs. (8), (9) and (10),
a system of N coupled equations of N unknowns. Again, the deformation
at each site £n is developed in powers of 1/H, as in Eq. (11). Expanding the
minimization equations to the lowest order in 1 / H , we find that

that

is the first non-vanishing term for the nth site and that

As consequences of these relations, it becomes obvious firstly that c(n) is the
first nonvanishing term of the power expansion of {n for n < N/2 for even
values of N and for n < ( N + 1 ) / 2 for odd values of N. Secondly, the
analytical expression for this term is

Thirdly, if the configuration characterized by N + 1 is built from the con-
figuration characterized by N by inserting one site in the center of the lat-
ter, the deformation associated to the common sites of the two configura-
tions are equivalent up to the order 1/HN/2 or 1/H(N-1)/2, if N is even or
odd, respectively. It has to be added that the deformation is antisymmetric,
that is to say that £n= — £N-n + 1.

We are now ready to express the energy of a 1/r(N+ 1) phase as a
function of the energy of the 0/1 and 1 /rN phases. In fact, the hypotheses
are that the 1 / r ( N + 1) phase develops around the degeneracy line of the
0/1 and the 1 /rN phases and that the new phase can be interpreted as a
mixture of the two latter phases, with an added deformation. Schemati-
cally,
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This means that

are the successive angles of one sequence characterizing the 1 / r ( N + 1 )
phase for the even values of N, while
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are the successive angles of one sequence characterizing the 1 / r ( N + 1 )
phase, for the odd values of N. The relation for <pN/2 + 1 and ( p ( N + 1 ) / 2

corresponds to the added part of 0/1 phase for the even and the odd values
of N, respectively. <p(N) takes into account all the deformations already pre-
sent in the 1/N phase. In the 1 / r ( N + 1) phase, these deformations will also
be present, but a new deformation xn characteristic of the new length of the
succeeding sequences has to be added. For the even values of N, the
antisymmetry of the deformation implies the absence of any deformation at
the added site N/2 + 1, while for the odd values of N, this antisymmetry
implies the presence of the deformation — <^(N)+1)/2 at the added site
(N+ 1)/2. If it is supposed that

the antisymmetry of the deformations implies a phase angle $ =
— n / ( N + 1 ) . The results of the previous paragraph, namely Eqs. (15), (16),
(17) and (18), imply that

and

for the even values of N, while

and

for the odd values of N.
Inserting all these relations in Eq. (2), the averaged energy at a site

can be estimated up to order N in 1 /H. For the even values of N and up
to this order,

We deduce that the introduction of a new site results in the lowering of the
energy for a given domain of the phase diagram even without adding any
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deformation. The influence of an "adequate" deformation results in the
modification of the energy at the order N + 1 in 1 /H . On the other hand,
for the odd values of N, it is found in a similar way that the energy of a
sequence is

up to order N in 1/H. But for the odd values of N, it is necessary to deter-
mine the variational parameter A to obtain Eq. (28). As a result, the intro-
duction of a new site in a sequence of N sites need to be conjugated with
an added deformation if N is odd. The change in the energy does appear
at the order N in 1/H. It is worth mentioning that the introduction of the
value r = 3 for N = 2 and 4 gives back the particular results previously
explained, while the results for N = 3 seems quite different: in fact, the last
term on the r.h.s. of Eq. (27) corresponds to the lowering in energy
obtained by deforming the mixture of the phases 1/rN and 0/1. But the first
term on the r.h.s. of Eq. (27) also gives a contribution to the same order.
In contrast, in Eq. (13), the two contributions are taken into account.

The fourth step of our work is the generalization to any P/Q phase for
a-jln in [0, l/2r], which is quite straightforward: in fact, any P/Q phase
with Q and r relative prime integers is created from the 1 / (Q — 1) phase by
adding Pr molecules belonging to the 1/r phase to the sequence of Q— 1
molecules composing the elementary pattern. In contrast, if r divides Q, the
P/Q phase is created from the 1 / ( Q / r — 1 ) phase by adding P molecules
belonging to the 1/r phase to the sequence of Q/r — 1 molecules composing
the elementary pattern of the 1 /(Q/r- 1) phase. Of course, to compensate
the increasing in 1/r phase concentration, an added deformation is
required. As example, a 1/r phase can be added to a 1/rN phase to create
a 2/r(N+ 1) phase. The result is essentially the same as above, namely

with the detailed expression of the last term depending upon the parity
of N. This procedure can be used recurrently. So, the energy has to be
expanded up to the (Q— 1)th order in 1/H to verify that a P/Q phase is a
ground state of the system for a certain domain of the phase diagram. This
result concerns the P/Q phases with Q and r relative prime integers and
0 < w = P/Q < 1/2r. If r divides Q, it can be deduced that the P/Q phase is
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a ground state of the system if the energy is expanded up to the (Q/r — 1 )th
order in 1 /H, again with 0 < w = P/Q < 1/2r.

In the fifth step of our work, we deduce that the 0/1 and the 1 /rN
phases are bordering the 1 / r ( N + 1) phase if the system energy is expanded
up to order N in 1 /H. Consequently, the spread of the 1 / r ( N + 1 ) phase is
measured by the distance between the lines determined by

and

For a given value of H> 1, Eq. (30) implies that

with a.g denoting the value of a on the degeneracy line of the 0/1 and the
1 / r ( N + 1 ) phases, while a.c denotes the value of oc on the degeneracy line
of the 0/1 and the 1/rN phase. Eq. (32) is obtained with the further
hypothesis of a — n/r «. 1 in the domain of interest. Of course, it is always
possible to make this quantity as small as wanted, simply by increasing the
value of H. A similar relation holds for the degeneracy line of the
1 / r ( N + 1 ) and the 1/rN line. Those two relations express the measure of
the spread of the 1 / r ( N + 1 ) phase. Generalizing this result to any P/Q
phase, one obtains

with S defining as above the spread of the P/Q phase, q = Q for a P/Q
phase with Q and r relative prime integers, while q = Q/r otherwise. Equa-
tion (33) is to be compared with Eq. (6).

Now, it seems crucial to explain the physical points of interest for
such a calculation, which is apparently only on value for H > 1. Firstly, we
think that it points strongly to the non-existence of any discontinuity in
such phase diagrams. And this kind of phase diagrams is quite common in
the study of ordering with competitive interactions. Even if in the present
case the strong coupling limit seems rather an academic preoccupation, we
hope our work will find applications for some physical systems, or par-
ticular physical situations. Secondly, it clearly shows why a soliton-like
theory is not able to sustain the high coupling limit: the description of the
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Fig. 2. Details of Fig. 1. The continuous lines are the numerical stability limits of the corre-
sponding phases. The dashed-dotted lines correspond to the degeneracy lines of the adjacent
represented phases.

structure needs discontinuous entities that apparently correspond to the
discontinuous equivalent of the solitons. Thirdly, and it is the most impor-
tant fact for our interest, some results are reported on Fig. 2 and the con-
sideration of the ordinate is very instructive: while we propose a systematic
development for H > 1, the results seems to agree on a much larger scale.
In fact, the well-known quotient criteria for series convergence implies that

for the series expansion of <pn to converge. The quantity on the 1.h.s of
Eq. (34) scales as 1 /r2H rather as 1 /H .

IV. ONE COLUMN IN A RECTANGULAR ARRAY

After the detailed study of a column in an averaged field originating
from six surrounding equivalent columns, the purpose of this section is to
analyze the influence of an anisotropy of the field. More precisely, the mini-
mal energy configurations corresponding to the hamiltonian of Eq. (3) are
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investigated. This section is in the continuity of the preceding one, making
use of the strong coupling limit results, and again showing that results in
the strong coupling limit are often very helpful to understand a phase
diagram, even in the opposite limit. The discussion is divided in two parts,
the first one dealing with the ratio G/H = d kept as a constant, while in the
second part, the parameter G is kept constant. Remember that H is the
same interaction constant as defined above with r = 3 and that G is a
measure of the anisotropy and is associated with a magnetic-like term in
Eq. (3).

A. Constant Anisotropy

The influence of the parameter d = G/H is investigated. As was pre-
viously remarked, the topology of the phase diagram corresponding to
Eq. (2) is very different in the high coupling limit for r = 1 or r + 1. In fact,
for r = 1 there is a critical value of the coupling parameter above which the
ferromagnetic phase is the only ground state of the system, no matter the
value of the natural cantedness. Up to now, a magnetic-like behaviour will
refer to such a property of the phase diagram. In contrast, for all integer
value of r + 1, there remains an infinity of phases up to infinite value of H
where all these phases except r of them, are restricted to isolated points called
multiphase points. A multiphase-like behavior will refer to this situation.

Fig. 3. Analytical phase diagram representing the 0/1 phases corresponding to a ground
state of a column in a rectangular array of columns.
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As it has been discussed above, in a multiphase-like diagram, any
phase expands around the degeneracy lines of two other phases. Obviously,
this is the competition between those two phases that gives birth to a third
one. Of course, a magnetic-like diagram clearly illustrates the lack of com-
petition. So, to determine the high coupling limit topology of the phase
diagram associated to Eq. (3), the ferromagnetic ground states with d
constant are determined. The solutions are presented at Fig. 3. The high
coupling limit means here that both G and H are higher than unity, but
with the ratio d kept as a constant.

For 0 < d < 9, we found two degenerate ferromagnetic ground states,
suggesting a multiphase-like topology for the corresponding phase diagrams,
while for d > 9, the ferromagnetic ground state is sole, calling for magnetic-
like topologies. These results do agree with the numerical solutions presented
at Fig. 4a and 4c, obtained with the use of the effective potential method

Fig. 4. The continuous lines correspond to the numerical phase diagrams of a column in a
rectangular array of columns, for various values of the parameter d. d is the ratio G/H. The
phases covering most of the phase diagrams are represented: (a) d=3. The dashed lines
correspond to the degeneracy lines of the 0/1 and the 1/4 phases on the left and the 1/4 and
the 1/2 phases on the right, as determined by an 1/H expansion of the energy; (b) d = 9. The
dashed line corresponds to the degeneracy lines of two 1/4 phases of different structure; (c)
d= 10. The dashed line corresponds to the degeneracy lines of two 1/4 phases of different
structures. The 0/1 and 1/2 degeneracy line is also represented but is undistinguishable from
the numerical solution.
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Fig. 4. ( Continued)



of Griffith and Chou. The value d=9 appears like a hinge point between
the two above identified behaviors. The corresponding phase diagram is
presented at Fig. 4b. As can be expected, when the interaction parameters
H and G are increased, all the molecules tends to align with the ferromagnetic
direction. For values of d > 9, the perfect alignment is realised at a finite
value of H = G/d. For instance, the 1/2 phase can be assimilated to an alter-
nate structure around the magnetic direction. With this assumption, the
energy of this phase is easily determined as well as the degeneracy line
between the 0/1 and the 1/2 phases. This line is reported at Fig. 4c but is
undistinguishable from the numerical solution. For values of d in ]0, 9[,
there are two degenerate ferromagnetic directions: as the coupling param-
eters H and G are increased, all the molecules of any structure tend to align
with one of these two directions, resulting in an infinity of conceivable con-
figurations. Of course, the two extremal solutions take the best part of the
situation and extend over the largest domain of the phase diagram.
Namely, configurations where all the molecules have chosen the same
direction, resulting in a 0/1 phase and the opposite case, where one over
every two molecules have chosen one direction and the other one the other
direction, resulting in a 1/2 phase. As a consequence, there remain multiphase
points at infinite value of H and G. The case d = 0 simply gives back the
previously investigated hamiltonian. For such multiphase diagrams, the sys-
tematic development previously introduced is of major interest: the energy
expressions of the 1/4 and 1/3 phases are expanded up to first order in 1/H
and the degeneracy limits of these phases and the 0/1 and 1/2 phases are
reported at Fig. 4a. Anew, the numerical accord is perfect, with the 1/3
phase never being a ground state for the system, up to this order in 1/H.

For d = 9, an intermediate solution is found: all the molecules of any
given configuration tend to align with the two degenerate ferromagnetic
directions. But these two directions also moves towards one another, coin-
ciding in the limit of infinite value of H. Also, though an infinity of phases
seems to extend up to infinite value of H, the 0/1 phase is the only phase
existing as the limit is reached: the transition from a multiphase-like
diagram to a magnetic-like proceeds by the asymptotic transformation of
all the phases degenerated at the multiphase point into the same configura-
tion. Or equivalently, from the magnetic-like point of view, the 0/1 phase
is effectively the only remaining phase for all values of <x above a critical
value of H, but at d = 9, this critical value of H diverges. It seems interest-
ing to express the way the previously finite degeneracy limit between the
1/2 phase and the 0/1 phase goes on to infinite value of H as d decreases
to 9. Defining a critical exponent v as usual as
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the value v = 1 is found. More, if any P/Q phase corresponds to a modula-
tion around the ferromagnetic direction, the energy can be rewritten as

Defining

and

the degeneracy line between two given phases P1/Q1 and P2/Q2 is given by

which clearly indicates that v = 1 for all phases and that the 1/2 phase is the
last phase standing with the 0/1 phase as H is increased.

B. Varied Anisotropy

The phase diagrams as G is kept constant are shortly investigated. In
fact, the topology of the phase diagrams at constant value of d and in the
limit of a strong coupling with the lattice of columns are rather well under-
stood. In contrast, when H and G are of the order of the unity, strange
discontinuities like horizontal lines are numerically determined. We will
now explain the origin of these strange discontinuities, making use of the
systematic development in terms of a 1/H expansion of the energy. Con-
sider the infinite value of H limit, keeping G to a given finite value: the
corresponding phase diagrams are reported on Fig. 5. The drawn lines are
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Fig. 5. Analytical phase diagram of a column with H taking infinite value and G varying.
The detailed structure are depicted under the phase diagrams, with the convention of a
reference direction pointing on the upper direction.

multiphase lines in the same sense that the multiphase points previously
defined and we also note the existence of a multiphase region of finite
extension (P/2P). However, our attention is concentrated over the exist-
ence of a 1/3 phase at infinite value of H. This characteristic is a clue
indicating that for small values of G, the phases deform in the same way
as in the case of G = 0. To be more specific, the special case of the 1/4
phase is investigated. Two possible structures for this phase are pictured
above Fig. 6: on the right, the expected structure if the configuration is
deformed according to the symmetry associated with the parameter H,
while on the left, the expected structure at high values for both H and G.
Expanding the energy of Eq. (3) for both these situations up to the first
order in 1 /H, the degeneracy line between the two configurations is reported
on Fig. 6 as a discontinuous line. Obviously, the correspondence with the
numerical solution is very interesting. The discontinuity line of the 1/4
phase is thus to be attributed to the flop of one molecule. It seems
conceivable to think that, for phases of higher commensurability, the flop
of more than one molecule is necessary and that a set of discontinuities is
present. This result is in agreement with previous numerical results.(11)
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Fig. 6. Details of Fig. 4a. The continuous lines correspond to the numerical phase diagram
of a column in a rectangular array of columns characterized by d = 3. The dashed line is the
degeneracy lines of the two I/4 structures depicted over the phase diagram. The H interaction
parameter favors the left-hand-side structure (1/4a phase), while the combination of the H and
G parameters favors the right-hand-side structure (1/4b phase).

V. CONCLUSIONS

The influence of the interplay of the constitutive molecules symmetry
and the lattice symmetry over the orientational order along one column is
investigated. A detailed study of the hamiltonian of Eq. (2) is proposed,
particularly in the limit where H>1. This brings as a result a better under-
standing of the topology of phase diagrams like those presented on Fig. 1.
Moreover, the splitting of a multiphase point into an infinity of phases is
investigated, giving the variation of a phase spread in the hypothetical case
of a strong coupling with the array of columns. As these results can be
partly extended to a domain where H<1, they complement the well-
known results obtained in this limit.

As an extension of this work, the influence of the anisotropy of the lat-
tice of columns is studied. As it has numerically be shown, even small
distortions from the perfect triangular lattice can bring rather fundamental
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changes, with the possibility of the appearance of discontinuities. We do
apply our systematic development to this more complex phase diagram and
it allows us to explain these discontinuities, finding results that do perfectly
agree with previous numerical results of Yokoi, Tang and Chou.(10) The
other important characteristics of the hamiltonian of Eq. (3) is that it
allows a continuous transition from the two different behaviors that were
studied at Section III. As a consequence, the appearance of a multiphase
point becomes obvious. However, the structure of the phase diagram
corresponding to Eq. (3) is very rich and there is yet a lot of open ques-
tions, such as the concentration of discontinuity points over the boundaries
of various phases(10,11) and the structure of more complex phases. More
generally, an analytical method working for weak values of the coupling
parameters is still missing. As a consequence, the very simple development
we propose seems to be the only alternative to obtain an analytical expres-
sion for the energy.
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